51èmes journées de Biologie Praticienne

Le séquençage de nouvelle génération (NGS) aujourd'hui et demain dans les laboratoires de Biologie médicale

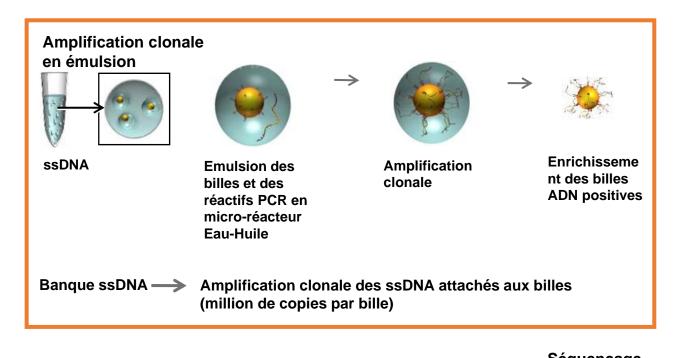
Vendredi 1er décembre 2017

Maison de la Chimie

Marc Delpech

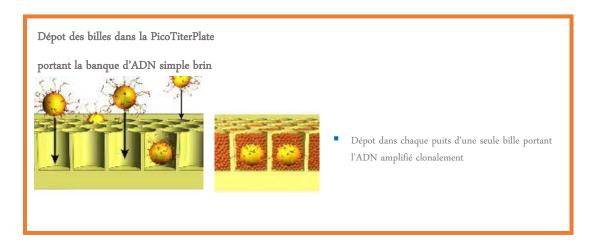
Le séquençage de Nouvelle Génération (NGS) : une révolution

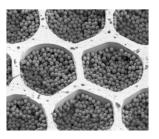
- Capacité de séquençage (en une seule fois)
 - Avant 2005 : quelques centaines à quelques milliers de bases (1ère génération)
 - 2006 : 20 millions de bases (2^{ème} génération)
 - 2007 : 2 à 3 milliards de bases
 - 2010 : 9 milliards de bases
 - 2012 : Gamme d'appareils permettant de séquencer de 20 à 200 milliards de bases
 - 2014: 1.800 milliards de bases
 - 2016: 6.000 milliards de bases
 - Et maintenant des appareils capables de séquencer des molécules une à une, dont certains sont miniaturisés (3ème Génération)


Le premier système commercialisé, le 454 de Roche

La deuxième génération à partir de 2006

	GS20 - FLX 454 –Roche	Solexa 1G Illumina	SOLID ABI
Technologie	Synthèse	Synthèse	Ligation
Longueur lue en pb	250 pb 500 pb	30-40 pb	25-50 pb
Longueur totale lue par run	2006 : 20 Mb 2008 100 Mb 2009 : 1 Gb	2006 : 1-1,6 Gb 2010 : 9 Gb	2007 : 2-3 2009 : 9 Gb


emPCR- Amplification clonale



Document Roche®

La réaction de séquençage

- Diamètre des puits: 44 μm
- La plaque contient 1.6 x 10⁶ puits

Document Roche®

Il existe 3 approches pour le NGS

• Le séquençage ciblé de panels de gènes

- Le séquençage est limité à un panel de gènes
- C'est l'approche utilisée très majoritairement en Biologie Médicale

Le WES (Whole Exome Sequencing)

 C'est le séquençage de toutes les parties codantes du génome ou exons

Le WGS (Whole genome Sequencing)

C'est le séquençage de la totalité du génome d'un individu

Les principales applications dans les laboratoires d'analyse médicale

- Prénatal
 - Sexe fœtal
 - Rh fœtal
 - Trisomie 21
 - Diagnostic de quelques maladies héréditaires
- Cancérologie
 - Biomarqueurs
 - Décision thérapeutique
 - Mécanismes de résistance
 - Clonalité
 - Métastases
- La Microbiologie
 - Identification
 - Résistance
- Transplantation
- Inflammation

D'abord Les outils et leur utilisation

Les premiers systèmes 2006

Roche GS20

Illumina Solexa

ABI SOLID

Evolution des systèmes - 2012

HiSeq 2000 26 à 200 Gb

IIx 8 à 45 Gb

Ile 3 à 20 Gb

Images

Toujours plus puissants - 2014

La puissance augmente encore 2016 - 2017

NovaSeq 5.000

167 – 2.000 Gb Temps de run 19 – 40 h Lecture par run 1,4 – 6,6 Gb

NovaSeq 6.000

167 – 6.000 Gb Temps de run 19 – 40 h Lecture par run 1,4 – 20 Gb

Le plan français « France Médecine génomique 2025 »

- Fait suite à un rapport demandé par Manuel VALLS alors premier ministre
- Décision de créer 12 plateformes nationales de grand séquençage uniquement dédiées au diagnostic médical. Mais deux seulement dans un premier temps
- Chacune
 - Devra séquencer 18.000 génomes complets par an
 - Aura un budget de 200 à 300 millions d'euros par an
- Appel d'offres avec 2 lauréats (désignés le 17 juillet 2017)
 - Lyon (AURAGEN)
 - Paris (SEQOiA)
- La partie technique sera réalisée par le privé
- A Paris il a été décidé de créer un centre informatique pour le stockage et l'analyse des données qui sera ouvert à tous les hôpitaux de l'APHP

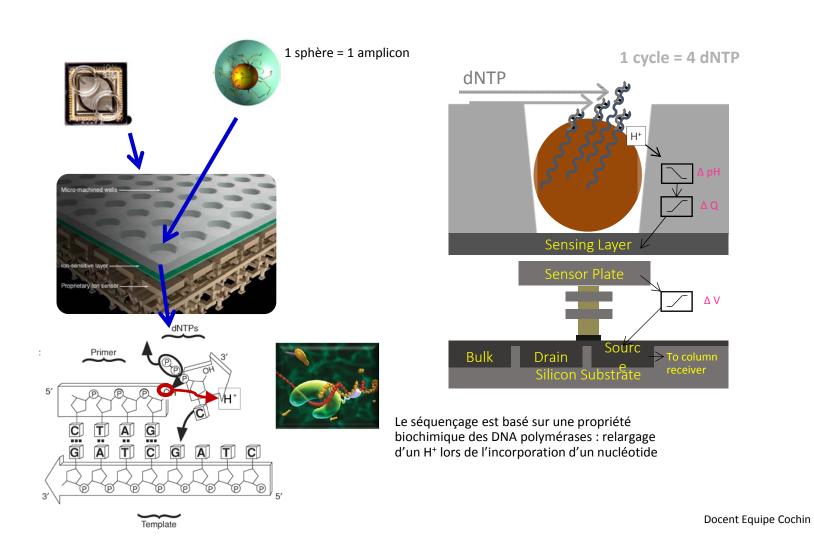
Les systèmes dédiés aux laboratoires de Biologie Médicale

Les deux systèmes les plus utilisés

10 Mb to 1 Gb

Thermo Fisher PGM

90-minute run times 35–400* bp reads


Illumina MiSeq

25 millions de reads 2x300* bp reads

Images

Séquençage sur le Ion PGM System®

Un système pour la Biologie Médicale mais plus universel : La séquence de la totalité du génome en quelques heures

16 to 120 Gb

Sequencing run time: 15-29 h

Illumina NextSeq 550

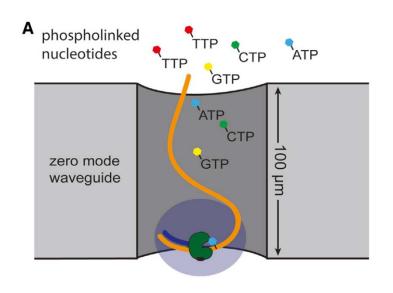
Images

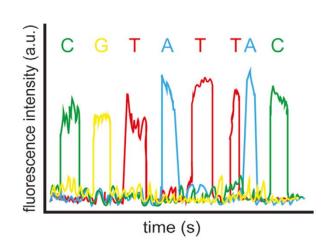
Vraisemblablement les systèmes du futur

Le séquençage de 3^{ème} génération

Une troisième génération avec les systèmes qui séquencent des molécules uniques

Sequel System




PacBio RS II

Séquençage une à une de chaînes d'ADN de 20 à 150 kb

Le principe Single-molecule real-time (SMRT) sequencing

Diamètre des puits 70 nm, hauteur 100 nm (longueur d'onde visible : 400 à 700 nm)

D'où un volume éclairé de 20 zeptolitres 20 x 10⁻²¹ litre

Pas d'amplification par PCR préalable

Permet de séquencer des molécules d'ADN de 20kb à 150 kb

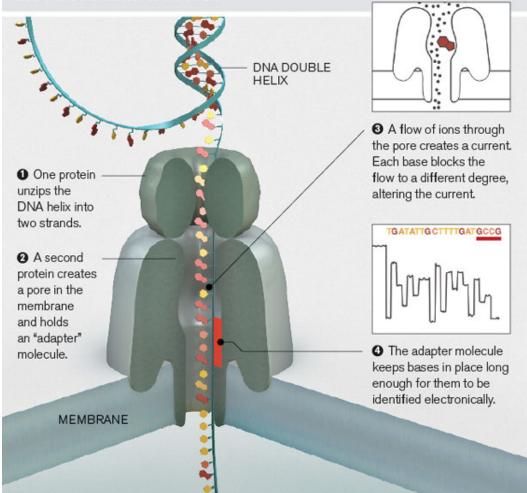
Permet dans le même temps de détecter les cytosines méthylées (mesure de vitesse)

Problème : les erreurs de séquençage

Le séquençage de molécules uniques miniaturisé

Oxford Nanopore

200 ng d'ADN
20-400 bases/seconde/pore
Cartouche avec 2000 nanopores
10⁶ bp/seconde
Fragments jusqu'à 150 kb
10 à 20 Gb au total



Le système de séquençage Nanopore

DNA can be sequenced by threading it through a microscopic pore in a membrane. Bases are identified by the way they affect ions flowing through the pore from one side of the membrane to the other.

Il est possible d'en associer 5

GridION_{X5}

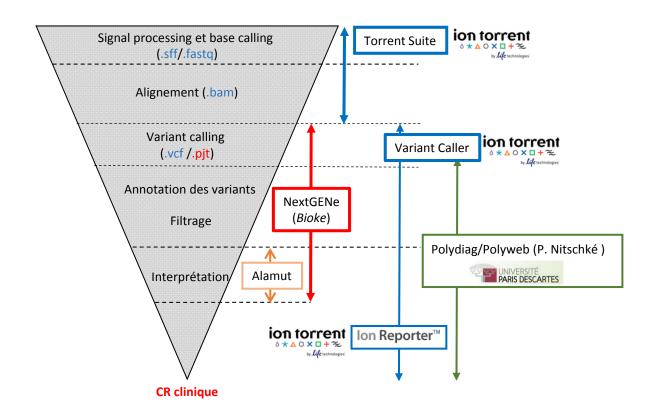
50 à 100 Gb

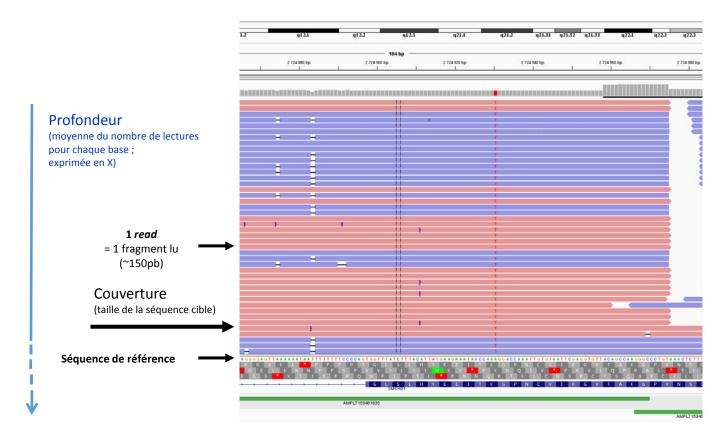
Ou même 48

Prometh ION

Ou encore la simplicité absolue

Encore plus simple demain


Un vrai problème : la masse des données


Le « pipeline » informatique

Analyse bio informatique

Capacité de séquençage ⇔ nombre patients x couverture x profondeur

Plateforme NGS-COCHIN

Bâtiment Jean Dausset, HUPC COCHIN, Paris,

Ion PGM™ Sequencer

Ion Chef™ Instrument

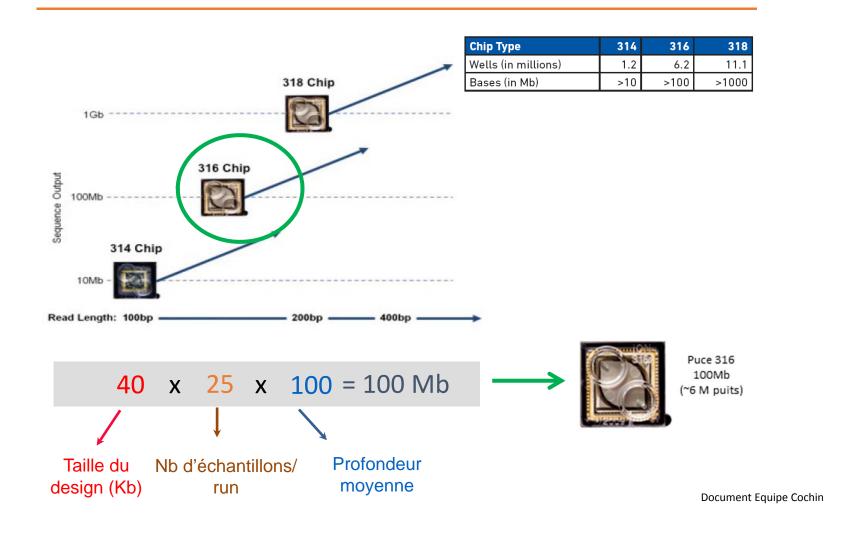
Ion Proton™ System

Nextseq 500

Dans notre laboratoire, en moins de deux ans

Le séquençage classique a été remplacé par le NGS

200 Gènes - 850 Kb de séquence codante


Pathologies	Gènes	Taille (kb)
Dystrophies musculaires	DMD	73.2
NF1/syndrome de Legius	NF1, SPRED1	20,6
Hémophilies A et B	F8C, F9	18,6
Mucoviscidose	CFTR	10
Pancréatites chroniques	PRSS1, CASR, SLC9A1, SLC26A9, SLC26A6, SPINK1, SLC9A3, CTRC	29
Hypogonadismes hypogonadotropes	KAL1, FGFR1, FGF8, PROKR2, PROK2, SEMA3A, HS6ST1, WDR11, CHD7, GNRHR, GNRH1, KISS1R, KISS1, TACR3, TAC3, SOX10	54
Insuffisances ovariennes	NOBOX, GALT, EIF2S2, MSH5, EIF2B4, DIAPH2, NHA, XPNPEP2, BMP15, SR1, EIF2B2, DMC1, FOXL2, FOXA1, FOXA3, FSHR, GPR3, NR5A1, PGRMC1, BHLHB9, FIGLA, NBN, ATM, GDF9, EIF2B1	52,5
Métabolisme phospho- calcique	CASR, GCM2, PTH, GNAS, PTH1R, PTHLH, PDE4D, IHH, AP2S1, GNA11, PRKAR1A, PHEX, FGF23, SLC34A1, SLC9A3R2, SLC34A3, DMP1, GALNT3, CYP27B1, VDR, CYP24A1	48
Vitréo-rétinopathies	COL9A2, COL11A1, KCNJ13, VCAN, COL9A1, TSPAN12, ATOH7, LRP5, FZD4, COL2A1, NDP	60
Syndrome de Sotos	SETD2, DNMT3A, NSD1	30,6
Encéphalopathies	CDKL5,CNTNAP2,CSDE1, IQSEC2, KIAA1279,MBD5,MECP2,MEF2C,MLL,NRXN1,SLC9A6,SOX5,SRY,STXBP, TCF4, UBE3A, ZEB2	115
Malformations corticales	CUL4B, WDR62, GPR56, KIAA1279, TUBA1A, TUBB2B, LIS1, DYNC1H1, KIF2A, TUBB5, NOTCH3, CCND2, DCX, ACTB, ACTG1, CDC27, TUBA8, SNAP29, KIF5C, FLNA, ARX, TUBG1, EML1, RELN, OCLN, RTTN, NDE1, C6ORF70, RABGAP1, MAP3K4	183,5
FSHD1/FSHD2	SMCHD1, région4q	21,8
Myopathies des ceintures	ANO5, CAPN3, CAV3, DYSF, EMD, FKRP, LMNA, SGCA, SGCB, SGCD, SGCG, TRIM32	64,3
NF2/Schwannomatoses	NF2, SMARCB1, SMARCE1, SUFU, LZTR1	14,5
HNPCC et polypose colique	MLH1, MSH2, MSH6, PMS2, EPCAM, APC, MUTYH, POLE, POLD1, AXIN2, BMPR1A, SMAD4, STK11, PTEN, GREM1, CDH1	48
Prédispositions aux tumeurs endocrines	CDKN2A, ARMC5, AP2S1, CDKN1B, CDKN2B, AIP, PRKAR1A, CDC73, CASR, CDKN1A, CDKN1C, CDKN2C, MEN1, DAXX, GNA11	29

Marc Delpech, Michel Goossens, Michel Vidaud

Cherif Beldjord, Thierry Bienvenu, Audrey Briand, Eric Clauser, Catherine Costa, Laurence Cuisset, Catherine Dodé, Emmanuelle Girodon-Boulandet,

Nadim Hamzoui, Marc Jeanpierre, France Leturcq, Juliette Nectoux, Béatrice Parfait, Eric Pasmant, Sophie Valleix, Dominique Vidaud Nicole Palaysi, Chrystel Leroy, Philippe Goussard

Choix de la puce

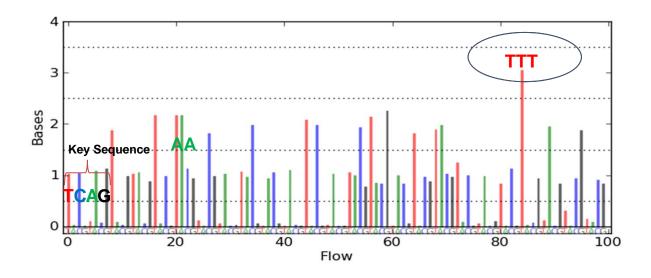
Préparation des banques de fragments : « Library »

- Par amplification (PCR) ou capture (hybridation) de l'ADN ou du cDNA et/ou sélection des molécules à séquencer (ADN immunoprécipité)
- Ligation à bout franc d'adaptateurs spécifiques à chaque technologie pour permettre une amplification par PCR.

Il est possible d'analyser des dizaines de patients en même temps

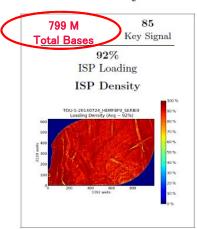
- Pour cela on ajoute une étiquette spécifique pour chaque patient lors de la constitution de la banque
 - CCCCCCCCAAAA patient 1
 - TTTTTTCCCCCAAAA patient 2
 - Etc.
- Lors de la lecture de la séquence, la lecture de l'étiquette indique à qui appartient la séquence qui suit

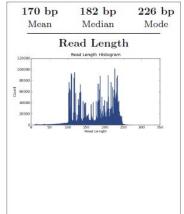
« Wet Lab »

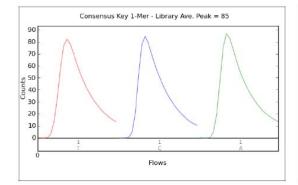


Dessin des primers	Préparation de la libraire	Appréciation des qualité et quantité des	PCR en émulsion Amplification clonale	Enrichissement	Séquençage si puce lon 318
Ampliseq designer	Kit Ion AmpliSeq™	amplicons Bioanalyzer™	lon OneTouch™ Instrument	lon OneTouch™ ES	Ion PGM™ sequencer
	N. C.				

Ionogramme généré


Séquence: TTGTAGTTCTTAA...

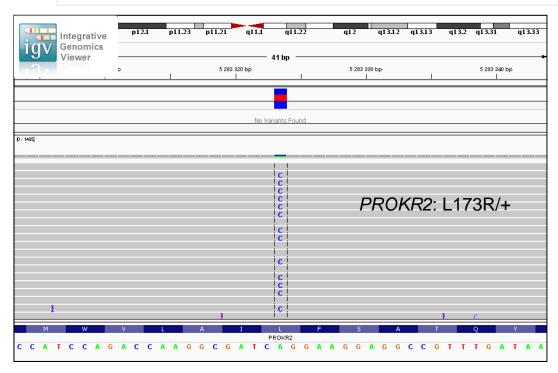

Limite de la méthode : « tassement » du signal dans les régions d'homopolymères


Rapport de séquençage

Run Summary

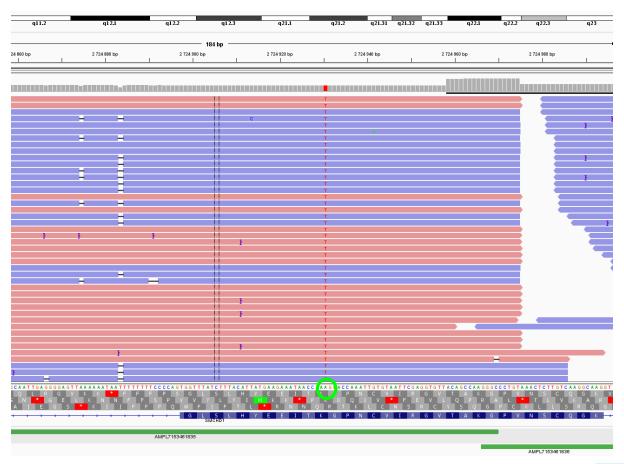
Addressable Wells	6,354,416	
With ISPs	5,816,010	91.5%
Live	5,815,970	100.0%
Test Fragment	53,536	00.9%
T ·1	5,762,434	99.1%
Library ISPs		30.170
unicopia viva esposi M is	5,762,434	33.170
Library ISPs		12.8%
Library ISPs Filtered: Polyclonal Filtered: Low Quality	5,762,434	
Library ISPs Filtered: Polyclonal	5,762,434 739,755	12.8%

Exemple de mutation faux-sens hétérozygote

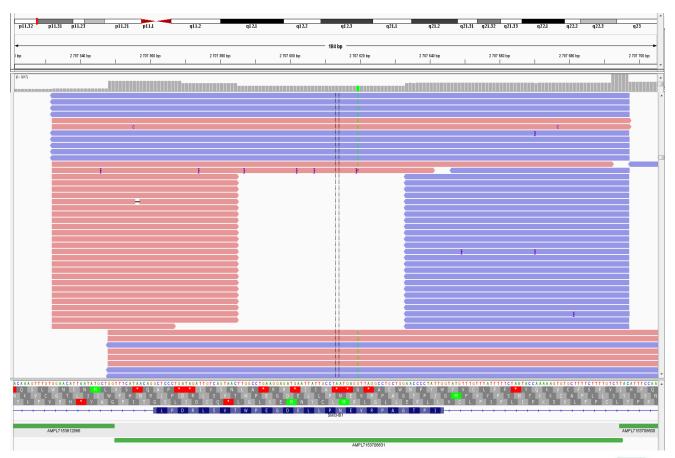


Rapport variant caller

PositionGeneTargetIDTypeZygosityRefVarFreqRefCovVarCov5283323PROKR2AMPL4660769085SNPHetAC48.84039

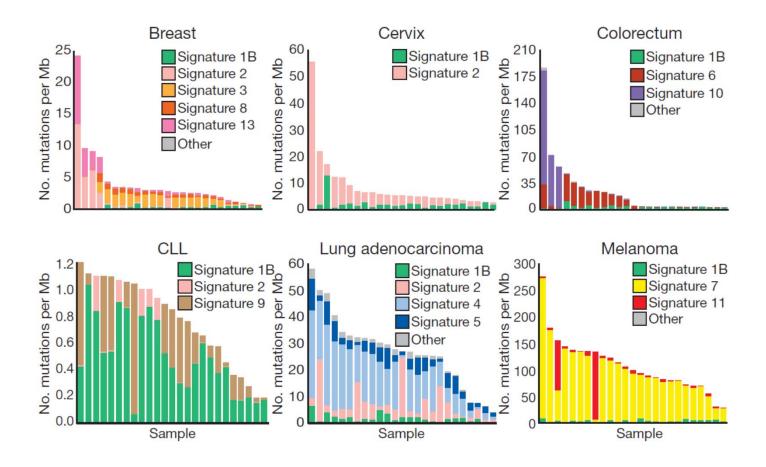


PositionGeneCDSChrRefCoverageScoreMutation callAA change5283323PROKR2220A8313A>AC173L>LR


Document Equipe Cochin

Exemple de mutation faux-sens homozygote

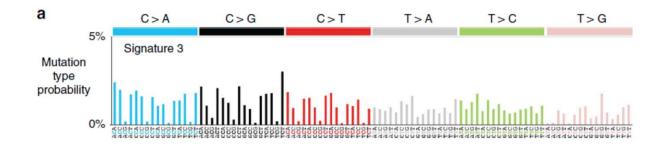
Exemple de détection de délétion de 50 nucléotides

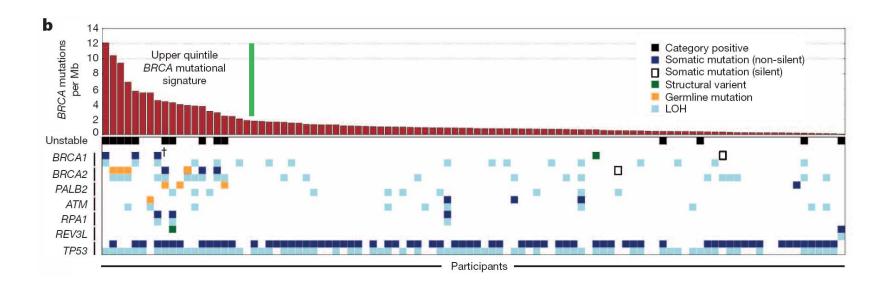


Applications en cancérologie

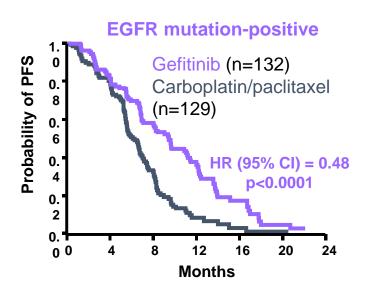
- Biomarqueurs
- Décision thérapeutique
- Mécanismes de résistance
- Clonalité
- Métastases

Il faut distinguer

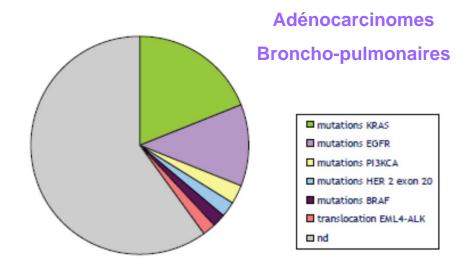

- L'oncogénétique constitutionnelle
- L'oncogénétique somatique

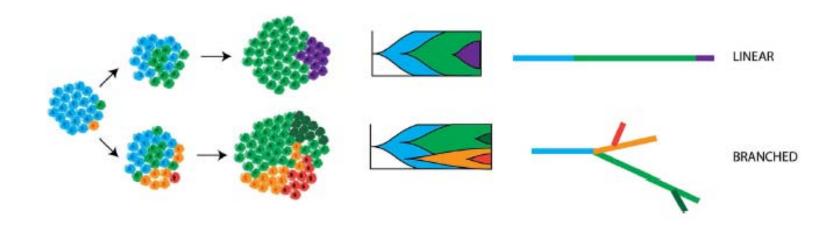


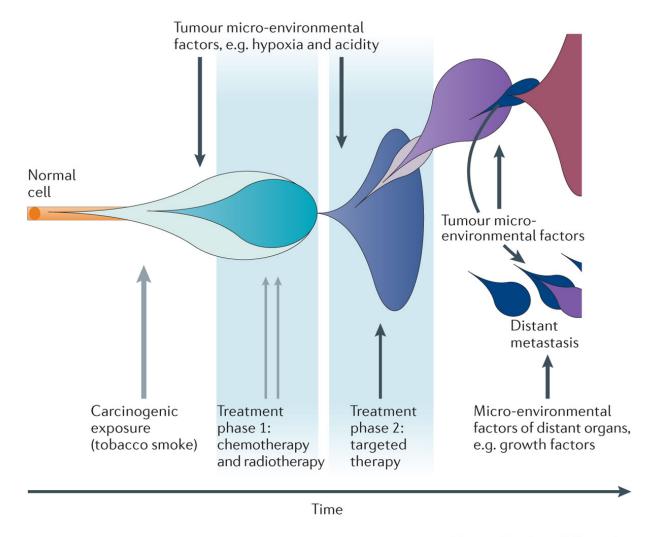
Signatures of mutational processes in human cancer


Adenocarcinomes du pancréas

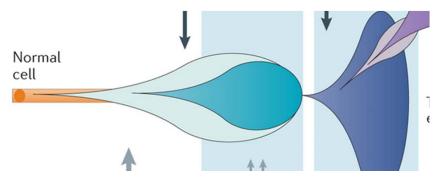
association signature BRCA / instabilité chromosomique / mutation HR (GL ou S)




Classification moléculaire des cancers : base de la médecine de précision



Mok T, N Engl J Med 2009


Evolution clonale tumorale

Nature Reviews | Genetics

Indications oncogénétique somatique

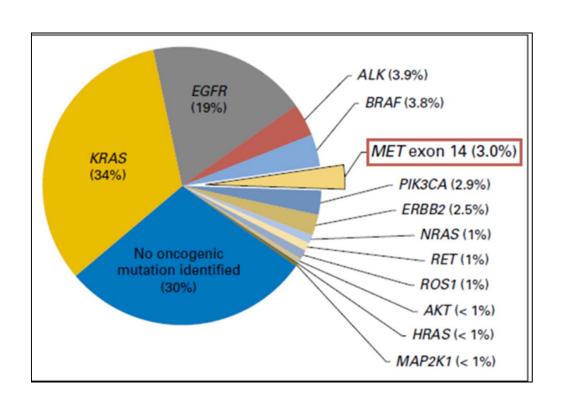
Choix du prélèvement :

- Tumeur I ou II (fixée)
- Plasma

1 - Anomalie « driver » Pouvant être ciblée par un traitement?

K poumon : mut *EGFR*Mélanome : mut *BRAF*K ovaire : mut *BRCA1/2...*

2- Anomalie « driver »
Conférant résistance I au traitement ?
K colo-rectal : mut RAS (KRAS, NRAS)...


3 - Anomalie associée à résistance et pouvant être ciblée par un traitement? K poumon : mut *EGFR*, *mut ALK*....

4 - Anomalie « actionnable » ? Essai clinique, hors AMM....

TKI-EGFR (AMM)
Erlotinib
Gefinitib
Afatinib
Osimertinib

TKI-ALK (AMM)
Crizotinib
Ceritinib
Alectinib.....

Anti-BRAF (essais) Vemurafenib Dabrafenib

TKI-MET (essais)
Crizotinib...

TKI-RET (essais)
Cabozantinib...

TKI-ROS1 (essais) Crizotinib...

Service de Pneumologie Service de Chirurgie thoracique Service de Radiologie

Types de prélèvement:

- Pièce opératoire
- Biopsies sous scanner, bronchiques
- EBUS, liquide pleural, péricardique ...

Service d'Anatomie Pathologique

A Lupo, MC Charpentier, D Damotte, B Burroni, A Rouquette

ADN extrait Tissu fixé

Service de Génétique moléculaire

K Leroy, E Pasmant

Plateforme FISH

Réarrangements ALK, ROS1 et RET et amplification MET

Plateforme NGS

dosage Fluorimétrie Séquençage NGS (panels de gènes ciblés)

CR commun pathologiste et moléculaire :

- Diagnostic histologique et % de cellules tumorales
- Diagnostic des anomalies moléculaires (Mutations gènes EGFR, KRAS, BRAF, ERBB2, TP53...)

Table 1. Ion AmpliSeq™ Colon and Lung Cancer Research Panel v2.

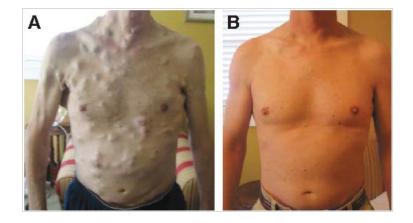
Sample type	FFPE samples
Application	Somatic mutation detection
Genes	KRAS, EGFR, BRAF, PIK3CA, AKT1, ERBB2, PTEN, NRAS, STK11, MAP2K1, ALK, DDR2, CTNNB1, MET, TP53, SMAD4, FBX7, FGFR3, NOTCH1, ERBB4, FGFR1, FGFR2
Pairs of primers and amplicon length	92 pairs of primers in a single pool 92 amplicons with an average length of 162 bp
Input DNA required	10 ng

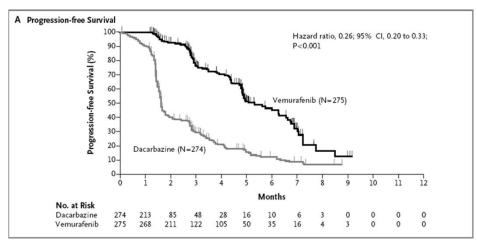
Adenocarcinomes du poumon

- Au diagnostic ou à la progression sous traitement ciblé anti-EGFR, anti-ALK
- Tissu ou plasma
- → Panel Oncomine solid tumor DNA kit

EGFR exons 18, 19, 20, 21 (10%)	→ TKI-EGFR de 1 ^{er} , 2 ^{ème} , 3eme génération		
KRAS exons 2, 3 (30%)			
BRAF exon 11, 15	→ Essais cliniques (vemurafenib, dabrafenib)		
ERBB2 exon 20	→ Essais cliniques		
MET exon 14 (mal couvert)	→ Essais cliniques (crizotinib)		
ALK exons 22, 23,25	→ TKI-ALK de 1ere, 2 ^{ème} , 3 ^{ème} génération		
TP53 (>50%)	Informativité du test, absence contamination		

Adenocarcinomes colo-rectaux

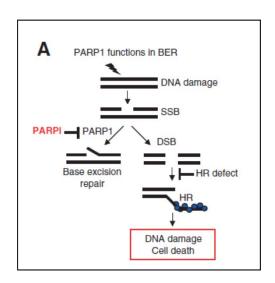

→ Panel Oncomine solid tumor DNA kit

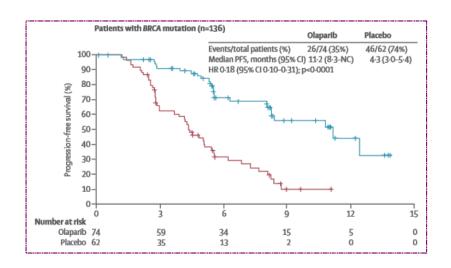

KRAS exons 2,3,4 NRAS exons 2, 3, 4	Contre-Indication aux traitements anti-EGFR (mAb)
BRAF exon 11, 15	MSI sporadique (vs Lynch) Facteur pronostique (intensification CT ?)
PIK3CA exons 10,21	Essais cliniques, intérêt de l'aspirine en adjuvant ?
TP53, FBXW7, SMAD4	Informativité du test, absence contamination

Mélanomes

→ Panel Oncomine solid tumor DNA kit

BRAF exon 15 (V600)	→ Traitements anti-BRAF
NRAS exons 2,3	→ Essais cliniques


Chapman et al, N Engl J Med 2011


Cancers de l'ovaire

→ Panel BRCA1/2 (community → early access TF)

BRCA1/2

→ Traitement par Inhibiteurs de PARP

La cancer du colon dans le laboratoire avant 2014

- Gènes APC et MYH analyse envoyée à un autre laboratoire
- Gènes MLH-1 et MLH-2 : séquençage Sanger dans le laboratoire
- Gènes MSH6 et PMS2 analyse envoyée à un autre laboratoire
- Plusieurs mois étaient nécessaires pour avoir un résultat

Dans le laboratoire depuis 2014

- Tous les gènes impliqués dans la polypose adénomateuse familiale sont séquencés en un seul run de NGS
- Tous les gènes impliqués dans l'HNPCC (Hereditary Non Polyposis Colorectal Cancer)/syndrome de Lynch Syndrome sont séquencés en un seul run de NGS
- Tous les gènes possiblement responsables sont séquencés chaque semaine chez 24 patients
- Résultat fourni en une semaine et non un mois

L'outil est donc puissant, mais il se pose le problème de l'accès au tissu à analyser

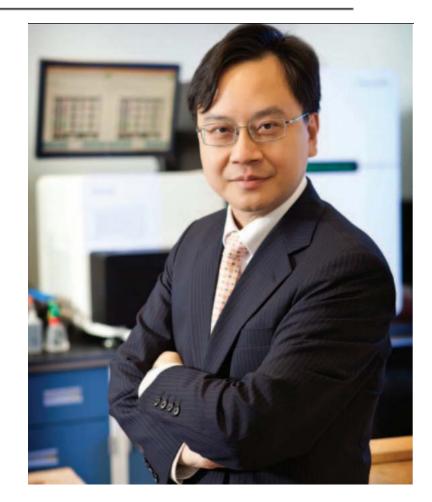
 Dans le cadre du diagnostic prénatal le prélèvement de tissu fœtal présente un risque d'avortement spontané

 Dans le cadre du cancer Il n'est possible d'avoir du tissu tumoral que si une intervention chirurgicale ou une biopsie est réalisée et cette dernière n'est pas toujours possible

Early report

Presence of fetal DNA in maternal plasma and serum

Y M Dennis Lo, Noemi Corbetta, Paul F Chamberlain, Vik Rai, Ian L Sargent, Christopher W G Redman, James S Wainscoat

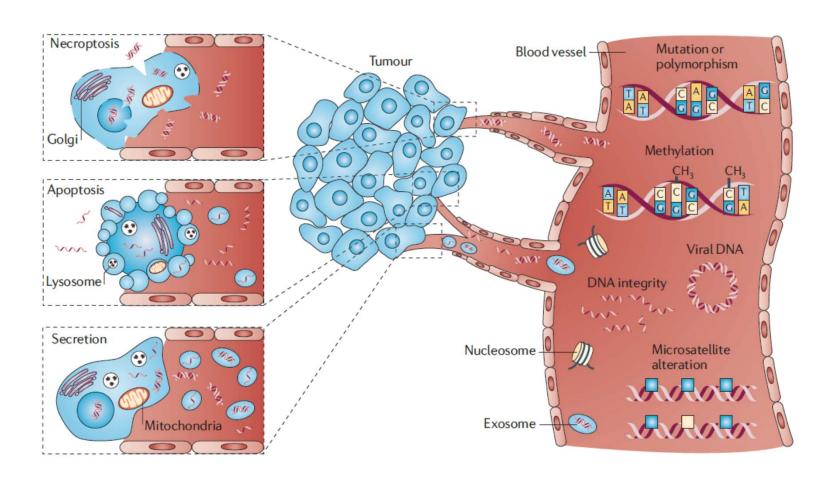

Summary

Background The potential use of plasma and serum for molecular diagnosis has generated interest. Tumour DNA has been found in the plasma and serum of cancer patients, and molecular analysis has been done on this material. We investigated the equivalent condition in pregnancy—that is, whether fetal DNA is present in maternal plasma and serum.

Methods We used a rapid-boiling method to extract DNA from plasma and serum. DNA from plasma, serum, and nucleated blood cells from 43 pregnant women underwent a sensitive Y-PCR assay to detect circulating male fetal DNA from women bearing male fetuses.

Findings Fetus-derived Y sequences were detected in 24 (80%) of the 30 maternal plasma samples, and in 21 (70%) of the 30 maternal serum samples, from women bearing male fetuses. These results were obtained with only 10 μ L of the samples. When DNA from nucleated blood cells extracted from a similar volume of blood was used, only five (17%) of the 30 samples gave a positive Y signal. None of the 13 women bearing female fetuses, and none of the ten non-pregnant control women, had positive results for plasma, serum or nucleated blood cells.

Interpretation Our finding of circulating fetal DNA in maternal plasma may have implications for non-invasive prenatal diagnosis, and for improving our understanding of the fetomaternal relationship.

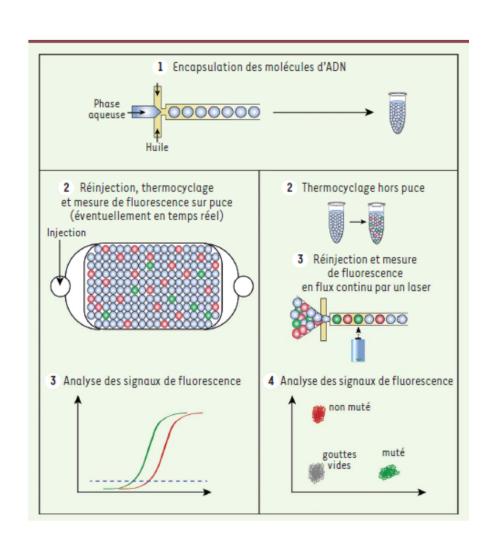

Lancet 1997; 350: 485-87

Il se pose aussi un problème de sensibilité

 Dans le cadre du diagnostic prénatal le sang de la mère ne contient que quelques copies d'ADN fœtal mélangé à son propre ADN circulant qui est très majoritaire

 Dans le cadre du cancer, qu'il s'agisse d'une biopsie ou d'ADN tumoral circulant l'analyse porte sur un mélange d'ADN normal et d'ADN tumoral

La biopsie liquide


Schwarzenbach et al Nature Reviews Cancer 11, 426-437

Pour résoudre le problème de la sensibilité

Une nouvelle méthode a été développée : La PCR Digitale

Principe de la PCR Digitale

Système à 200.000 micro-chambres de Fluidigm

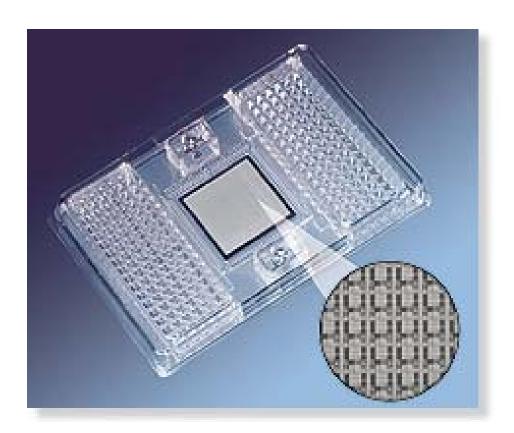
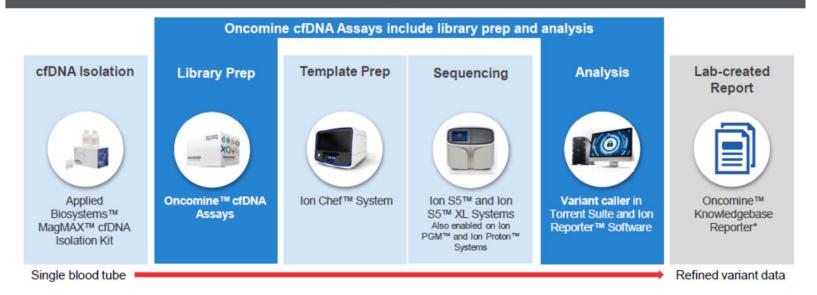


Image Fluidigm

Système RainDance 10.000.000 de gouttes de quelques pl dans chacun des 8 canaux

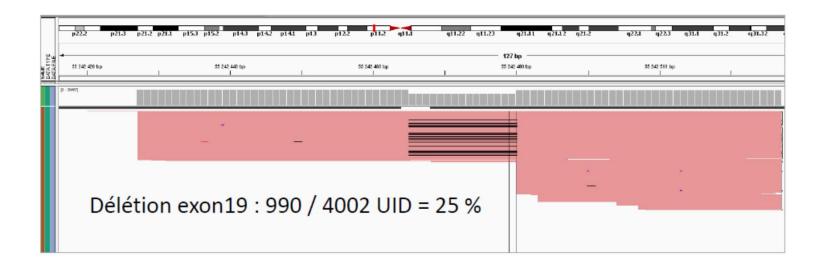
Les systèmes à puits

Fournisseur	Instrument et prix	Nombre de compartiments	Processus	qPCR	Analyse multiplex
Fluidigm	BioMark™ HD \$ 250 000	Puce 12 entrées : 9 180 partitions de 6 nL	(1) Échantillons chargés dans le Digital Array	Oui	5 couleurs/5 cibles (la 5° couleur est l'ultraviolet)
Corporation	€Р1 ™ \$ 150 000	Puce 48 entrées : 36 960 partitions de 0,85 nL	(2) Le Digital Array est placé dans le contrôleur (3) Le système BioMark réalise le thermocyclage et l'analyse de fluorescence	Non	5 couleurs/5 cibles
Life Fechnologies	OpenArray® RealTime PCR System \$ 140 000 et QuantStudio™ 12 k Flex \$ 90 000-\$ 190 000	Par plaque, 3 072 partitions de 33 nL (analyse de 3 à 4 plaques en parallèle)	(1) Chargement des échantillons avec le système Accufill (3) Analyse des données (2) Thermocyclage	Oui	2 couleurs/2 cibles
SlipChip	Plate-forme SlipChip N/A	1 280 partitions de 2,6 nL	Réactif Huile Glissement des plaques Échantillon	Oui	***
	Plate-forme rotationnelle multivolume N/A	640 partitions 160 partitions de 125 n 160 partitions de 25 nL 160 partitions de 5 nL 160 partitions de 1 nL	Mise en contact et mélange	•	


Les systèmes à flux de gouttes

Fournisseu	r Instrument et prix	Nombre de compartiments	Processus	qPCR	Analyse multiplex
	Système QX100™ (2 machines : générateur et analyseur de gouttes) \$ 89 000	20 000 gouttes de 1 nL (8 échantillons en parallèle)	(1) Échantillons chargés dans la puce (2) Transfert de la puce dans le générateur de gouttes (3) Les gouttes sont transférées et thermocyclées dans des microtubes (4) Détection de la fluorescence des gouttes avec l'analyseur	Non	2 couleurs/2 cibles
RainDance Technologi		5 à 10 millions de gouttes de 5 pL (8 échantillons en parallèle)	(1) Échantillons chargés dans la puce (2) Transfert de la puce dans le générateur de gouttes (source)	Non	2 couleurs/10 cible
			(3) Les tubes contenant les gouttes sont thermocyclés (4) Détection de la fluorescence des gouttes avec l'analyseur (sense)		

Méthode de détection	Sensibilité	Adaptée à ce type d'échantillon
Séquençage par la méthode Sanger	> 10 %	Tissu tumoral
Pyroséquençage	5-10 %	Tissu tumoral
High resolution melting (HRM)	5 %	Tissu tumoral
Séquençage nouvelle génération	2 %	Tissu tumoral
qPCR en temps réel*	1-10 %	Tissu tumoral
BEAMing, PCR digitale	< 0,01 %	ADN tumoral circulant, variants rares dans le tissu tumora


La procédure avec l'ADN plasmatique est a même qu'avec l'ADN extrait d'une tumeur

Oncomine Cell-free DNA Assays

Analyse des ADNs plasmatiques tests (EGFR)

Statut EGFR de référence (NGS Oncomine™ solid Tumour DNA)	n	concordance	Résultats avec le kit Oncomine™ Lung cfDNA Assay*
Pas de variant détecté	4	\odot	Pas de variant détecté (n=4)
del19 VAF > 1,5 %	5	\odot	Détection dans 5/5 cas

Analyse des ADNs plasmatiques tests (TP53)

Statut TP53 de référence (NGS Oncomine™ solid Tumour DNA)	Résultats avec le kit Oncomine™ Lung cfDNA Assay* (UID)
Neg (n=10)	Neg (n=10)
R282W (0,18%)	R282W (0,17 %)
R273C (3,9%)	R273C (5,0 %)
C176Y (11%)	C176Y (9%)
Y220C (0,56%) + H179R (0,59%)	Y220C(0,44%)+ H179R (0,52%)
R196* (0,61%)	Non couvert par le design
V274A (3%)	Détectée dans IGV, non callée VC

Le NGS et la PCR digitale sont aussi des outils formidables pour

Le diagnostic prénatal

L'ADN fœtal dans le sang de la mère

- Une première estimation ; 3 à 6% de l'ADN circulant dans le sang de la mère
- Les derniers résultats montrent qu'il y en a en général plus : 4 à 35% (en routine 10 à 15%)
- On sait maintenant qu'il en faut au moins 4% pour obtenir un résultat exploitable en diagnostic
- La quantité varie en fonction de l'âge de la grossesse :
 - 4 à 6% vers 5 SA et on en trouve jusqu'à l'accouchement
 - En pratique le diagnostic est fait entre la 9 SA et 12 SA
- La durée de vie de l'ADN dans le sang de la mère n'est que de quelques minutes
- Il disparaît complètement 30 min après l'accouchement

Avec le NGS

Le diagnostic des aneuploïdies est possible à partir du sang de la mère

C'est utile car les résultats du dépistage classique sont mauvais

• Il ne détecte que 85 à 90% des fœtus atteints

• Il y a 4,5 à 5% de faux positifs (20% il y a quelques années) conduisant à un caryotype inutile

• Environ 50.000 fœtus sont étudiés pour rien. Avec un risque de perte du fœtus lié à l'acte de 1%, cela fait environ cela fait environ 500 fœtus perdus pour rien

Le diagnostic prénatal des maladies héréditaires est aussi concerné

- La détermination du sexe du fœtus

Maladies mendéliennes : détection de la mutation transmise par le père et absente chez la mère

- Maladies autosomiques dominantes : achondroplasie
 - Maladies autosomiques récessives : identification des fœtus ayant un risque de ½ d'être atteints

Le NGS

Un outil bientôt incontournable en Microbiologie

Report on an American Academy of Microbiology Colloquium held in Washington, DC, in April 2015.

Quelques communiqués de presse

Eurofins lance des tests NGS accrédités pour l'identification non ciblée de l'ensemble des bactéries d'une matrice

bioMérieux et Illumina signent un accord pour co-développer une solution de Séquençage Nouvelle Génération (NGS) pour le suivi épidémiologique des infections bactériennes

18 Novembre 2014

bioMérieux EpiSeq™: LA SOLUTION de choix pour une meilleure gestion des épidémies nosocomiales, tirant profit d'un NGS performant, *Powered by Illumina*™

Une nouvelle ère dans le diagnostic microbiologique

Habituellement, la détection des agents pathogènes résistants se fait à l'aide de l'amplification des acides nucléiques par réaction en chaîne par polymérase et par séquençage de Sanger. Cela devrait changer avec l'introduction d'une plateforme de séquençage nouvelle génération (NGS) dans la routine du diagnostic.

08:45	Accueil des participants
09:15	Application des NGS à l'étude d'un pathogène alimentaire : Escherichia coli productrice de Shiga toxine (STEC) Sabine Delannoy, Anses
09:45	Whole-genome mapping : nouvelle méthode de typage des isolats - avantages et limites Lucie Plourde, Sanofi-Pasteur
10:15	Séquençage de nouvelle génération du VIH en pratique courante Stéphanie Raymond, CHU Toulouse Jacques Izopet, CHU Toulouse
10:45	Pause-café
11:15	Analyse comparative de la sensibilité du séquençage métagénomique et de la PCR pour détecter un simulant d'agent pathogène (Bacillus atrophaeus) dans des échantillons environnementaux Dephine Plaire, CEA, Laboratoire de transcription et de génomique
11:45	Génotypage de résistance du VHC par séquençage à haut débit, applications et implémentation en routine diagnostique Christophe Rodriguez, CNR Hépatites virales B, C, delta, Plateforme NGS du Laboratoire de Virologie, Hôpital H. Mondor
12:15	Comparaison séquençage à haut débit versus séquençage Sanger dans la détection de variants minoritaires pour l'étude des résistances aux anti-rétroviraux de patients naïfs infectés par le VIH. Kazali Alidjinou, Institut de Microbiologie, CHU Lille Joséphine Deldalle, Institut de Microbiologie, CHU Lille Christophe Hallaert, Institut de Microbiologie, CHU Lille
12:45	Pause déjeuner
13:45	Comparaison de deux outils bio-informatiques pour l'épidémiologie des infections à Clostridium difficile. Rémi Le Guern, Institut de Microbiologie, CHU Lille Christophe Hallaert, Institut de Microbiologie, CHU Lille
14:00	Traçage moléculaire par NGS à haute précision pour Mycobacterium tuberculosis et Staphylococcus aureus Philip Supply, CNRS, Institut Pasteur de Lille
14:30	Deeplex-MycTB, un nouvel outil de diagnostic de Mycobacterium tuberculosis basé sur le NGS Cyril Gaudin, Genoscreen, LIlle
15:00	Plus d'excuses pour ne pas passer au NGS ! Gaël Kaneko, BioMérieux
15:30	PathoTRACK, une plateforme d'analyse de données de séquençage haut débit pour le NRBC Stéphane Cruveiller, CEA - Institut de Génomique, Evry
16:00	Exploitez largement vos données bio-informatiques du NGS ! Bruno Pot, Applied Math, Sint-Martens-Latem, Belgique

Le NGS et ses Applications Mardi 31 mai 2016 ASIEM, Paris

A l'évidence la cible à terme est

L'utilisation de la métagénomique pour l'identification sans a priori des bactéries

Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection

Robert Schlaberg, MD, MPH; Charles Y. Chiu, MD, PhD; Steve Miller, MD, PhD; Gary W. Procop, MD; George Weinstock, PhD; the Professional Practice Committee and Committee on Laboratory Practices of the American Society for Microbiology; the Microbiology Resource Committee of the College of American Pathologists

By combining unbiased sequencing, rapid data analysis, and comprehensive reference databases, metagenomics can be applied for hypothesis-free, universal pathogen detection, promising to improve diagnostic yield for syndromic testing of these infections.

Arch Pathol Lab Med—Vol 141, June 2017

Le problème central et bloquant

La qualité et l'exhaustivité des bases de données

Quelques pistes de réflexion

- Le NGS aura des incidences sur l'organisation de la Biologie
- Le rêve est devenu un cauchemar pour certains Biologistes (comme moi)
- Que faire de l'information trouvée (en dehors de celle qui concerne la question initiale)